Enhancing Omics Research of Crop Responses to Drought under Field Conditions
نویسندگان
چکیده
Crop production relies heavily on rainfall during the growing season, especially in developing countries. Drought, due largely to the effects of soil water deficit, is the most serious abiotic stress limiting crop production, accounting for ∼70% potential yield loss worldwide (Salekdeh et al., 2009). Therefore, a major goal for global agriculture is to develop drought-tolerant crops. To this end, a fully understanding of physiological, biochemical, and gene regulatory networks relating to drought tolerance in plants is essential (Valliyodan and Nguyen, 2006). In this aspect, tremendous advances have been made over the past decade. Particularly, morphological, physiological traits, and biochemical changes that are relevant for drought tolerance have been well documented combinations of them—systems biology, have been used to elucidate the complex mechanisms of drought stress responses in crops (Shanker et al., 2014; Budak et al., 2015). However, the systematic mechanism of drought responses in crops and its application in drought tolerance improvement remain largely unclear, because of limited systematic biology data available from field experiments and genotype × environment interaction in complex, often unknown ways. A search in PubMed (Oct 29, 2016) for original, omics articles on drought responses in major crops showed that proteomics, transcriptomics studies were much more than metabolomics studies (Figure 1A), and laboratory-based studies were overwhelming compared with those conducted in field (Supplementary Table 1). In all 151 original articles, only 11 reports on cotton, wheat, rice and maize were involved in field trials. Despite large amounts of biological information have been obtained from laboratory-grown seedlings, the results do not really reflect the performance of those in the field conditions, where the expression of drought tolerance trait of crops is most likely dependent on the interaction (abiotic and biotic) of genotype × environment. In other words, field assays are necessary to conclude results, and are closer to real conditions than the laboratory-studies. So, there is an urgent need to enhance omics analysis of crop responses to drought under the field, drought conditions. This is very valuable for crop improvement in the context of a changing climate and an increasing world population. Since proteins are directly involved in plant stress responses, proteomic studies can eventually contribute to dissect the possible relationships between protein changes and plant stress tolerance. To date, numerous drought responsive-proteins have been identified with proteomic approaches in crops (Mousavi et al., 2016), which provide a wealth of data to elucidate the mechanisms of drought …
منابع مشابه
Antioxidant enzyme responses and crop yield of wheat under drought stress and re-watering at vegetative growth period. Mohsen Saeidi1*, Shiva Ardalani1, Saeid Jalali-Honarmand1, Mohammad-Eghbal Ghobadi1 and Majid Abdoli2
Drought induced stress is one of the most significant environmental challenges. This study was designed to evaluate the effects of drought stress on crop yield and antioxidant systems during the vegetative period of wheat. The study was carried out in a greenhouse using factorial experiment based on complete randomized block design (RCBD) in three replications in Razi University in Iran from 20...
متن کاملDetermination of Crop Water Stress Index for Irrigation Scheduling of Turfgrass (Cynodon dactylon L. Pers.) under Drought Conditions
Abstract The crop water stress index (CWSI) is a valuable tool for monitoring and quantifying water stress as well as for irrigation scheduling. A field experiment was conducted during spring and summer 2012 at Research Station of College of Agriculture and Natural Resources of Darab, Shiraz University, Iran, to determine CWSI of turfgrass for irrigation scheduling. Four levels of water regime...
متن کاملThe role of plant growth regulators in enhancing crop yield under saline conditions: from theory to practice
Intensified salinization of water and soil resources has promoted interest for research and approaches of improving crop yield under saline conditions. Reviewing the literature showed that the records on understanding of different aspects of salt stress and enhanced salinity tolerance in the world goes back to more than a century. Different approaches have been suggested to increase crop yield ...
متن کاملEffects of field conditions, low nitrogen and drought on genetic parameters of protein and tryptophan concentrations in grain of quality protein maize
Quality Protein Maize (QPM) has about twice the amount of lysine and tryptophan of normal maize and hence represents an important tool of correcting its deficiency in protein quality. However, the effects of low nitrogen and drought on genetic parameters such as gene action and combining abilities of protein quantity and quality of QPM are not known. To study how these genetic parameters are af...
متن کاملEvaluation of Crop Water Stress Index, Canopy Temperature and Grain Yield of Five Iranian Wheat Cultivars Under Late Season Drought Stress
Abstract In order to evaluate crop water stress index (CWSI) and canopy temperature of wheat cultivars under terminal drought stress, a field experiment was conducted at the Agricultural Research Station of Shiraz University, Shiraz, during 2009 growing season. Five wheat cultivars including Shiraz, Bahar, Pishtaz, Sistan and Yavaros and four levels of water regime including well watering [Irr...
متن کامل